Mean = 14.8333

Standard deviation = 9.4534

Signal noise ratio (SNR) = 1.5691

<embed />

GENERATE WORK

GENERATE WORK

**Input Data : **

Data set = 3, 8, 10, 17, 24, 27

Total number of elements = 6

**Objective :**

Find what is signal to ratio calculation for given input data?

**Formula :**

**Solution :**

Mean = (3 + 8 + 10 + 17 + 24 + 27)/6

= 89/6

Mean = 14.8333

Standard Deviation σ = √(1/6 - 1) x ((3 - 14.8333)^{2} + ( 8 - 14.8333)^{2} + ( 10 - 14.8333)^{2} + ( 17 - 14.8333)^{2} + ( 24 - 14.8333)^{2} + ( 27 - 14.8333)^{2})

= √(1/5) x ((-11.8333)^{2} + (-6.8333)^{2} + (-4.8333)^{2} + (2.1667)^{2} + (9.1667)^{2} + (12.1667)^{2})

= √(0.2) x ((140.027) + (46.694) + (23.3608) + (4.6946) + (84.0284) + (148.0286))

= √(0.2) x 446.8333

= √89.3667

Standard Deviation σ = 9.4534

SNR = μσ

= 14.83339.4534

SNR = 1.5691

The below mathematical formula used in statistics to calculate the signal to noise (S/N) ratio to find the quality of signal

**SNR = P _{signal}/P_{noise} = μ/σ**

where

While working with the field of tele-communications or radio communications or optical communications, sometimes, this SNR ratio may required to design & tweak the circuits. The SNR can be calculated by the above